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SUMMARY

Stressful events during adulthood are potent adverse
environmental factors that can predispose individ-
uals to psychiatric disorders, including depression;
however, many individuals exposed to stressful
events can adapt and function normally. While stress
vulnerability may influence depression, the molec-
ular mechanisms underlying the susceptibility and
adaptation to chronic stress within the brain are
poorly understood. In this study, two genetically
distinct mouse strains that exhibit different behav-
ioral responses to chronic stress were used to
demonstrate how the differential epigenetic status
of the glial cell-derived neurotrophic factor (Gdnf)
gene in the ventral striatum modulates susceptibility
and adaptation to chronic stress. Our results suggest
that the histone modifications and DNA methylation
of theGdnf promoter have crucial roles in the control
of behavioral responses to chronic stress. Our data
provide insights into these mechanisms, suggesting
that epigenetic modifications of Gdnf, along with
genetic and environmental factors, contribute to
behavioral responses to stress.

INTRODUCTION

Major depressive disorder is one of the most common and

serious health problems in societies worldwide. While the

etiology of this disorder is multifactorial and poorly understood,

both genetic and environmental factors may be involved in the

precipitation of depression (Charney and Manji, 2004; Krishnan

andNestler, 2008; Feder et al., 2009). Chronic stressful life events

during adulthood are potent adverse environmental factors that

can activate or amplify the expression of depression symptoms

(Leonardo and Hen, 2008). Many individuals exposed to stress-

ful events do not show signs or symptoms of depression;

however, some individuals exposed to psychological stress are

predisposed to major depression (Charney, 2004). Thus far, the
molecular mechanisms underlying the susceptibility and adapta-

tion to chronic stress within the brain are poorly understood.

Genetically distinct mouse strains that exhibit substantial

differences in anxiety and stress reactivity have been used as

animal models for investigating the influence of genetic and envi-

ronmental factors on brain functions and behaviors (Francis

et al., 2003; Hovatta et al., 2005; Mozhui et al., 2010). In partic-

ular, the inbred BALB/c (BALB) mouse strain demonstrates

unique responses to stress. Compared to the C57BL/6 (B6)

stress-resilient strain, BALB mice show maladaptive responses

to stressful stimuli (Francis et al., 2003; Hovatta et al., 2005;

Bhansali et al., 2007; Palumbo et al., 2009). Therefore, BALB

mice are considered a stress-vulnerable strain, and comparing

the stress responses of BALB and B6 mice may provide useful

information regarding the mechanisms of susceptibility and

adaptation to stressful stimuli in brain function and behavior,

such as those associated with depression.

Neuronal activity regulates a complex program of gene

expression that is involved in the structural and functional plas-

ticity of the brain (Flavell and Greenberg, 2008). There is also

increasing evidence indicating that aberrant transcription regula-

tion is one of the key components in the pathophysiology of

depression (Tsankova et al., 2007; Krishnan and Nestler, 2008;

Feder et al., 2009). Recent reports have suggested that the

epigenetic regulation of genes, such as DNA methylation and

histone modification, can trigger the development of stress

vulnerability and contribute to the behavioral responses to

chronic stress and antidepressants (Weaver et al., 2004;

Tsankova et al., 2006; Fyffe et al., 2008; Jakobsson et al.,

2008; LaPlant et al., 2010). However, the role of environmental

factors along with genetic factors in the epigenetic regulation

of the pathogenesis of depression is largely unknown.

The aim of the present study was to clarify the molecular

mechanisms underlying the susceptibility and adaptation to

chronic stress using stress-vulnerable BALB and stress-resilient

B6 mice strains. Our results show that the differential epigenetic

status of the glial cell-derived neurotrophic factor (Gdnf) gene in

the nucleus accumbens (NAc) influences differential behavioral

responses to stress. Therefore, we propose that epigenetic

regulation of Gdnf by environmental factors, along with genetic

factors, contributes to the level of susceptibility and adaptation

ability of individuals to chronic stressful life events.
Neuron 69, 359–372, January 27, 2011 ª2011 Elsevier Inc. 359

mailto:s-uchida@yamaguchi-u.ac.jp
mailto:yoshiwat@yamaguchi-u.ac.jp
http://dx.doi.org/10.1016/j.neuron.2010.12.023


Table 1. Summary of Behavioral Characterizations of B6 and BALB Mice Subjected to CUMS

Behavioral Assay Phenotype Tested

Stressed B6 Stessed BALB

Stressed

BALB with IMI

Nonstressed

BALB with IMI

Versus Nonstressed B6 Versus Nonstressed BALB

Forced swim test Immobility time 4 [ 4 Y

Latency to immobility 4 Y 4 [

First immobility time 4 [ 4 4

Sucrose preference test Preference ratio 4 Y 4 4

Total (water + sucrose) intake 4 4 4 4

Social interaction test Interaction time [ Y 4 4

Total number of interactions 4 Y 4 4

Novelty-suppressed

feeding test

Latency to feed Y [ 4 Y

Food consumption 4 4 4 4

Body weight loss 4 4 4 4

This table shows the behavioral differences between B6 and BALB mice subjected to CUMS conditions for 6 weeks. Also shown are the effects of

3 weeks of antidepressant treatment in stressed and non-stressed BALB mice.4, no change; [, significantly greater changes; Y, significantly fewer

changes. IMI; imipramine.
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RESULTS

Complete statistical summaries of behavior, gene expression by

quantitative real-time PCR (Q-PCR) and Western blotting, and

chromatin immunoprecipitation (ChIP) data are provided in

Tables S1, S2, and S3 (available online), respectively.

Differential Behavioral Responses to Chronic
Stress in B6 and BALB Mice
We first investigated the behavioral consequences of 6 weeks of

chronic ultra-mild stress (CUMS) exposure, a procedure based

solely on environmental and social stressors that do not include

food or water deprivation (Lanfumey et al., 1999; Rangon et al.,

2007), in BALB and B6 mice. The experimental design is shown

in Figure S1A, and the results are summarized in Table 1. Anhe-

donia, diminished interest or pleasure, is one of the core

symptoms of major depression (Wong and Licinio, 2001). There-

fore, we examined whether this trait was present in stressed

BALB mice using a sucrose preference test (Figures S2A and

S2B). CUMS significantly decreased sucrose preference, and

this effect was reversed by continuous treatment (via drinking

water) with imipramine (IMI, 18 mg/kg/day), a tricyclic antide-

pressant (Figure S2A). Total fluid intake was not affected by

either treatment (Figure S2B). We then subjected BALB mice

to the acute forced swim test, which uses increased immobility

time as an index of behavioral despair (Porsolt et al., 1977).

CUMS significantly increased immobility times (Figure S2C)

and the duration of the first immobility episode (Figure S2D)

and reduced the latency to the first immobility episode (Fig-

ure S2E). These behavioral effects were reversed with contin-

uous IMI treatment (Figures S2C–S2E).

Anxiety is frequently comorbid in patients with major depres-

sion. To examine the effects of CUMS on anxiety behavior, we

performed the novelty-suppressed feeding test. The latency to

begin eating in a novel environment has been used as an index

of anxiety behavior (Richardson-Jones et al., 2010). Stressed

BALB mice showed significantly longer latency periods to
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feeding (Figure S2F), with no significant differences in weight

loss induced by food deprivation (Figure S2G) or feeding activi-

ties (Figure S2H). Furthermore, the increased latency to feed

induced by CUMS was reversed with continuous IMI treatment

(Figure S2F). Anxiety behavior was also examined using the

elevated zero maze test. The amount of time spent in the open

section and frequency of rearing were not affected by CUMS

(data not shown). Social interaction time also provides an index

of anxiety and depression-like behavior. More anxious and

depressed rodents spend less time in social interactions (File

and Seth, 2003; Berton et al., 2006). Stressed BALB mice spent

significantly less time engaged in social interactions and had

fewer interactions than the nonstressed controls. This effect

was also reversed with continuous IMI treatment (Figures S2I

and S2J). Taken together, these results indicate an increase

in depression- and anxiety-related behaviors in stressed BALB

mice.

In contrast with the BALB mice, B6 mice subjected to CUMS

did not show any behavioral changes in the sucrose preference

test (Figures S3A and S3B) or forced swim test (Figures S3C and

S3D), but they did demonstrate a reduced latency to feed in the

novelty-suppressed feeding test (Figure S3E) and increased

interaction times in the social interaction test (Figure S3G),

suggesting a decrease in anxiety-related behaviors in stressed

B6 mice. In addition to behavioral characterization, we also

examined the plasma corticosterone (CORT) levels of mice to

investigate how CUMS influences neuroendocrine function. We

found increased plasma CORT levels 60 min after the initiation

of a stressor in both BALB and B6 mice on day 3 of the CUMS

session (Figures S4A and S4B). In contrast, on day 38 of the

CUMS session, B6 mice showed a reduction in plasma CORT

levels 60 min after the initiation of the stressor (Figure S4B).

This effect was not observed in BALB mice (Figure S4A). Thus,

BALB mice responded to CUMS with an increase in depres-

sion-like phenotypes, whereas the B6 mice responded to the

same stress conditions with a decrease in anxiety-related

behaviors. These behavioral and neuroendocrine data indicate



Figure 1. Differential Regulation of Gdnf Expression in Stress-Susceptible and Stress-Adaptive Mice Strains

(A) mRNA expression ofGdnf in the dSTR and vSTR of BALBmice subjected to CUMS or nonstress (NS) conditions with or without continuous IMI (18mg/kg/day)

treatment (n = 6 per group; *p < 0.05 versus NS mice receiving vehicle (normal water) in corresponding brain regions).

(B) mRNA expression ofGdnf in the dSTR and vSTR of B6mice subjected to CUMS or NS conditions (n = 6 per group; *p < 0.05 versus NS in corresponding brain

regions).

(C) Levels of GDNF proteins in the dSTR and vSTR of BALB and B6mice subjected to CUMS or NS conditions with or without continuous IMI treatment (n = 8–12

per group; *p < 0.05 versus NS mice receiving water in corresponding brain regions).

(D–G) Correlation analyses of GDNF levels in the vSTR of nonstressed BALB (black line) and B6 (red line) mice and (D) the social interaction times (BALB; n = 21,

B6; n = 12), (E) the sucrose preferences (BALB; n = 28, B6; n = 16), (F) the immobility times in the forced swim test (BALB; n = 28, B6; n = 16), and (G) the latency to

feed in the novelty-suppressed feeding test (BALB; n = 28, B6; n = 16) (*p < 0.05).

(H and I) Successful transductions of EGFP (H) and GDNF (I) into the NAc using the PEI gene delivery system are shown.

(J and K) Effects of GDNF overexpression in the NAc of nonstressed B6 and stressed BALBmice (n = 14–19 per group) on social interaction times (J) and sucrose

preference (K) (*p < 0.05 versus PEI/Egfp in corresponding strains). Data are presented as mean ± SEM.
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that BALB and B6 mice develop ‘‘passive’’ and ‘‘active’’

responses to stress, suggesting that these strains of mice are

susceptible and adaptive strains to CUMS, respectively.

Expression Analyses of a Variety of Neurotrophic
Factors in a Mouse Model of Depression
Neurotrophic factors play important roles in the regulation of

synaptic and structural plasticity in the brain and may be

involved in depression (Nestler et al., 2002; Duman and Monteg-

gia, 2006). To investigate the contribution of neurotrophic factors

to the behavioral abnormalities of stressed BALB mice, the

mRNA levels of multiple neurotrophic factors were examined,

including Bdnf, Gdnf, Vegf, Nt-3, Nt-4/5, Cdnf, Ngf, Fgf2, and

Igf1, in regions of the brain associated with stress, such as the

hippocampus (HP), prefrontal cortex, amygdala, striatum

(STR), and hypothalamus, of BALB mice subjected to 6 weeks

of CUMS either with or without continuous IMI treatment.
Q-PCR revealed that the expression levels of Bdnf, Vegf, and

Igf1 mRNA were significantly increased by continuous IMI

treatment, but were not affected by CUMS (Figures S5B, S5D,

and S5H). Interestingly, the mRNA levels of Gdnf and Nt-3 in

the STR and HP, respectively, were significantly decreased by

CUMS, and these effects were reversed by continuous IMI treat-

ment (Figures S5A and S5E). In addition, the mRNA expression

level of Gdnf in stressed BALB mice was significantly decreased

in both the dorsal STR (dSTR) and the ventral STR (vSTR)

(Figure 1A). On the contrary, the mRNA expression level of

Gdnf in stressed B6 mice was significantly increased in the

vSTR but not in the dSTR (Figure 1B). These changes in GDNF

expression were confirmed at the protein level using an ELISA

assay (Figure 1C). These results suggest that the transcriptional

regulation ofGdnf in the vSTR is differentially regulated in the two

mouse strains and may contribute to the observed behavioral

responses to CUMS.
Neuron 69, 359–372, January 27, 2011 ª2011 Elsevier Inc. 361
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Role of GDNF in the NAc in Depression-like Behaviors
We next investigated whether a correlation exists between Gdnf

expression in the vSTR and behavioral performances in mice.

We found that GDNF protein levels in the vSTR of nonstressed

BALB and B6mice were significantly correlated with social inter-

action time (Figure 1D) and sucrose preferences (Figure 1E), but

not with immobility times in the forced swim test (Figure 1F) or

the latency to feed in the novelty-suppressed feeding test (Fig-

ure 1G). These data suggest an important role for GDNF in the

vSTR for determining certain types of depression-like behaviors.

To directly investigate the role of GDNF in depression-like

behaviors, GDNF was overexpressed in the NAc of mice using

the polyethylenimine (PEI) gene delivery system. The experi-

mental design is shown in Figure S1B. The successful transduc-

tion of EGFP (Figure 1H) and GDNF (Figure 1I) into the NAc of

mice using this system was confirmed. We first assessed social

interaction time and sucrose preference for nonstressed B6mice

2 weeks after the injections of PEI/Gdnf or PEI/Egfp complexes.

We found that GDNF overexpression increased the social

interaction time (Figure 1J), but not the sucrose preference

(Figure 1K).We next investigated the effect of GDNF overexpres-

sion in stressful conditions. BALB mice were subjected to

4 weeks of CUMS and injected bilaterally into the NAc with either

PEI/Gdnf or PEI/Egfp complexes on day 14 of the CUMS

session. After the CUMS session, we performed behavioral

assays. We found that the social interaction time (Figure 1J)

and sucrose preference (Figure 1K) of the stressed BALB mice

that received PEI/Gdnf complexes were significantly greater

than those of the mice receiving PEI/Egfp complexes. These

results suggest a crucial role for GDNF in social interactions

and sucrose preference. The transcriptional regulation of Gdnf

in the NAc may also be involved in the development of suscep-

tibility and adaptation to CUMS.

Regulation of Histone Modifications by CUMS
and Continuous IMI Treatment
To explore the molecular mechanisms by which CUMS alters

Gdnf mRNA levels, resequence analysis of the Gdnf promoter

(4000 base pairs) was performed on BALB and B6 mice. No

differences were observed between the two mice strains

(data not shown), suggesting that epigenetic regulations may

account for altered Gdnf expression in stressed mice. Next,

we measured the levels of several posttranslational histone

modifications to the Gdnf promoter in vSTR tissues using

a ChIP assay. We found several differences in the histone

modifications of both BALB and B6 mice after CUMS and/or

continuous IMI treatment. Q-PCR measurements indicated

that Gdnf promoter-containing DNA fragments were signifi-

cantly less common in the acetylated histone 3 (H3ac) immuno-

precipitates prepared from stressed BALB mice. This effect

was reversed by continuous IMI treatment (Figure 2A).

Acetylated histone 4 (H4ac) levels at the Gdnf promoter

were not affected by either CUMS or continuous IMI treat-

ment (Figure 2B). In stressed B6 mice, H3ac levels at

the Gdnf promoter, but not H4ac levels, were significantly

increased by CUMS (Figures 2A and 2B). We also examined

the effects of CUMS on the level of trimethylated histone 3 at

lysine 27 (H3K27me3) and trimethylated histone 3 at lysine
362 Neuron 69, 359–372, January 27, 2011 ª2011 Elsevier Inc.
4 (H3K4me3), which are the respective repressive and acti-

vating markers of transcription, at the Gdnf promoter. The

levels of H3K27me3 were not affected by CUMS and IMI in

BALB mice, but they were significantly reduced in B6 mice

by CUMS (Figure 2C). The levels of H3K4me3 were significantly

reduced by CUMS in both strains, and this reduction was

reversed by IMI in stressed BALB mice (Figure 2D). These

data suggest that histone modifications to the Gdnf promoter

in response to CUMS are differentially regulated in each mouse

strain.

Next, we investigated the mechanisms underlying the

changes in the histone acetylation of the Gdnf promoter. We

hypothesized that the altered expression of histone deacety-

lases (HDACs) could account for the altered level of histone

acetylation. The levels of mRNA for HDACs (HDAC 1–11)

were measured in the vSTR of BALB mice using Q-PCR. Several

significant changes in Hdacs expression were observed

following CUMS and/or continuous IMI treatment (Figure 2E).

Of particular note, the mRNA level of Hdac2 in stressed

mice increased approximately two-fold compared with that of

nonstressed controls. This enhancement was reversed by

continuous IMI treatment. Changes at the protein level were

also determined using Western blot analysis (Figure 2F).

However, in the HP of BALB mice (Figure 2G) and the vSTR of

B6 mice (Figure 2H), there were no significant effects of CUMS

or IMI treatment on HDAC2 expression. Thus, these results

suggest that HDAC2 may be an important regulator of the

epigenetic repression ofGdnf expression in the vSTR of stressed

BALB mice.

To determine whether CUMS influences the binding of

HDAC2 to the Gdnf promoter, we performed a ChIP assay with

vSTR DNA. Q-PCR measurements indicated that Gdnf

promoter-containing DNA fragments are enriched in HDAC2

immunoprecipitates prepared from stressed BALB mice, and

this effect was reversed by continuous IMI treatment (Figure 2I).

No changes were observed at the Bdnf promoter II region (Fig-

ure S6A), whose transcript (Bdnf exon II) was not altered by

either CUMS or IMI treatment (Figure S6B). This finding validates

the specificity of the ChIP assay used in this study. In contrast to

BALB mice, there was no significant effect of CUMS on HDAC2

binding to the Gdnf promoter in B6 mice (Figure 2J).

Rapid Antidepressant Effects of SAHA
on CUMS-Induced Behavioral Deficits
Our data indicate that CUMS increases HDAC2 expression in the

vSTR of BALB mice but not in B6 mice. This observation led to

the hypothesis that this effect may be important for the transcrip-

tional repression of Gdnf and the behavioral susceptibility to

CUMS. To test the functional role of altered H3ac levels at the

Gdnf promoter and HDAC2 expression in stressed BALB mice,

suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor,

was systemically administered (25 mg/kg/day) for the last

5 days of each 6-week CUMS sessions and during behavioral

testing. In addition, to evaluate the possible antidepressant

effects of SAHA, either IMI or fluoxetine (FLX), a selective

serotonin reuptake inhibitor, was administered (25 mg/kg/day).

The experimental design is shown in Figure S1C. The mice that

received subchronic SAHA but not subchronic IMI or FLX



Figure 2. Differential Regulations of Histone Modifications in Stress-Susceptible and Stress-Adaptive Mice Strains

(A–D) Levels of posttranslational histonemodifications in theGdnf promoter of the vSTR of BALB and B6mice subjected to CUMSor nonstressed (NS) conditions

with or without IMI treatment were measured using ChIP assays with antibodies for acetylated histone 3 (A), acetylated histone 4 (B), and histone 3 trimethylated

on lysine 27 (H3-K27 trimethylation) (C) or lysine 4 (H3-K4 trimethylation) (D) (n = 6 per group; *p < 0.05 versus NS mice receiving vehicle (normal water) in cor-

responding strains).

(E) mRNA levels ofHdacs in the vSTR of BALBmice subjected to CUMS or NS conditions with or without IMI treatment (n = 6 per group; *p < 0.05 versus NSmice

receiving water).

(F and G) Western blot analysis of HDAC2 protein levels in the vSTR (F) and HP (G) of BALB mice subjected to CUMS or NS conditions with or without IMI treat-

ment (n = 7–8 per group; *p < 0.05 versus NS mice receiving water).

(H) mRNA and protein levels of HDAC2 in the vSTR of stressed B6 mice (n = 6 per group).

(I and J) HDAC2 levels at theGdnf promoter in the vSTR of BALB (I) and B6 (J) mice weremeasured using ChIP assays with a specific antibody for HDAC2 (n = 7–8

per group; *p < 0.05 versus NS mice receiving water). Data are presented as mean ± SEM.
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exhibited increased social interaction times compared with

vehicle-treatedmice in stressed conditions (Figure 3A). Similarly,

the sucrose preference of mice receiving SAHA, but not IMI or

FLX, was significantly increased compared to that of mice

receiving vehicle in stressed conditions (Figure 3B). In the

novelty-suppressed feeding test, SAHA reduced the latency to

feed in mice from both the nonstressed and the stressed condi-

tions, whereas subchronic IMI and FLX treatments did not affect

the latency to feed (Figure 3C). In addition, the immobility times

during the forced swim test were significantly decreased for

mice receiving SAHA, but not IMI or FLX, compared to vehicle-

treated mice from both the nonstressed and the stressed condi-

tions (Figure 3D). Furthermore, subchronic SAHA treatment, but

not IMI or FLX treatments, increased the mRNA levels of Gdnf in

the vSTR of stressed mice (Figure 3E). These data suggest that

HDAC inhibition can reverse both the increased depression-

like behaviors and the reduction of Gdnf expression by CUMS.

Our results also imply that SAHA has a more rapid antidepres-

sant effect than IMI and FLX.
Role of HDAC2 in Behavioral Responses to CUMS
To test the direct contribution of HDAC2 in the NAc to CUMS-

induced depression-like behaviors, dominant-negative HDAC2

(dnHDAC2; HDAC2 H141A) was overexpressed in the NAc of

BALB mice using adeno-associated virus (AAV)-mediated gene

transfer. Replacing His141 with Ala in the catalytic domain of

HDAC2 reduces deacetylase activity by 75% (Humphrey et al.,

2008). The experimental design is shown in Figure S1D. The

successful transduction of AAV-mediated dnHDAC2 and control

EGFP was first confirmed: EGFP fluorescence was observed in

the NAc (Figure 3F), and Western blot analysis showed that

dnHDAC2 was overexpressed in the vSTR region (Figure 3G).

The NAc was then bilaterally infected with AAV-dnHDAC2 or

AAV-EGFP. Seven days after the injection of AAV, mice

were subjected to CUMS for 4 weeks, followed by the social

interaction and sucrose preference tests. Mice that received

AAV-dnHDAC2 exhibited increased social interaction times (Fig-

ure 3H) and sucrose preferences (Figure 3I) compared with the

mice that received AAV-EGFP. Furthermore, the mRNA levels
Neuron 69, 359–372, January 27, 2011 ª2011 Elsevier Inc. 363



Figure 3. Inhibition of HDAC2 Function Leads to a Stress-Resilient Phenotype

(A–E) Either SAHA, IMI, FLX, or saline were intraperitoneally administered (25 mg/kg of body weight for all drugs) on the last 5 days of each 6-week period of

CUMS or nonstressed (NS) conditions and during behavioral testing. The social interaction times (n = 15–19 per group), (B) sucrose preferences (n = 18-20

per group), (C) latencies to feed (n = 18–20 per group), (D) immobility times (n = 18–20 per group), and (E) mRNA expression levels of Gdnf in the vSTR (n = 8

per group) are shown (*p < 0.05).

(F and G) Successful transductions of EGFP (F) and dominant-negative HDAC2 (dnHDAC2; G) using AAV-mediated gene transfer are shown.

(H–J) Effects of dnHDAC2 overexpression induced by AAV-mediated gene transfer in the NAc of BALBmice subjected to CUMS on (H) the social interaction time

test (n = 14–15 per group), (I) the sucrose preference test (n = 17–19 per group), and (J) the Gdnf mRNA levels (n = 8 per group; *p < 0.05).

(K and L) Effects of the overexpression of wild-type HDAC2 (wtHDAC2) or the HDAC2C262/274Amutant induced by AAV-mediated gene transfer in the NAc of B6

mice on the (K) social interaction time (n = 14–15 per group) and (L) mRNA levels of Gdnf (n = 8 per group; *p < 0.05). Data are presented as mean ± SEM.
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of Gdnf in the vSTR of stressed mice that received AAV-

dnHDAC2 were significantly increased compared to those of

stressed mice injected with AAV-EGFP (Figure 3J). These results

strongly suggest that the CUMS-induced activation of HDAC2

represses Gdnf transcription in the NAc, which results in aber-

rant behavioral responses in BALB mice.

To investigate the influence of HDAC2 on adaptive responses

to CUMS in B6 mice, we overexpressed wild-type HDAC2 in the

NAc of B6 mice and examined social interaction time and Gdnf

expression. Stressed mice injected with AAV-HDAC2 did not

show a reduction in social interaction time (Figure 3K) or Gdnf

expression (Figure 3L) when compared with stressed mice in-

jected with AAV-EGFP. A recent report showed that the nitrosy-

lation of HDAC2 induces its release from chromatin, which

promotes transcription. In the HDAC2 C262/274Amutant, which

lacks S-nitrosylation sites, HDAC2 strongly associates with

chromatin, thus repressing transcription (Nott et al., 2008). We

investigated the effects of HDAC2 C262/274A overexpression
364 Neuron 69, 359–372, January 27, 2011 ª2011 Elsevier Inc.
in the NAc of stressed B6 mice on social interaction and

Gdnf expression. We found that stressed mice injected with

AAV-HDAC2 C262/274A showed a reduction in social interac-

tion time (Figure 3K) and Gdnf expression (Figure 3L) compared

with stressed mice injected with AAV-EGFP. These results indi-

cate that the gain of function of HDAC2 in B6 mice leads to

a lack of active response to CUMS.

In contrast, the overexpression of the HDAC2 C262/274A

mutant in nonstressed B6 mice did not affect the social interac-

tion time or Gdnf expression (Figures 3K and 3L). Similar effects

were also observed in nonstressed BALBmice receiving bilateral

injections of either AAV-HDAC2 or AAV-HDAC2 C262/274A into

the NAc (Figure S7). These manipulations did not alter the social

interaction time (Figure S7B), sucrose preference (Figure S7C),

or Gdnf expression (Figure S7D). These data suggest that other

molecular mechanisms modulated by CUMS may also be

involved in the HDAC2-mediated Gdnf repression and subse-

quent behavioral alterations.



Figure 4. CUMS Induces Hypermethylation of the Gdnf Promoter and Increases MeCP2 Binding to Its Promoter in Both Mice Strains

(A) Position of the CpG sites within the mouse Gdnf promoter.

(B) Methylation of the Gdnf promoter showing the frequency of methylation observed at each CpG site for the HP and vSTR (n = 8 per group; *p < 0.05).

(C) Mean percentages of the methylated clones for the HP and vSTR. Themethylation percentage was calculated as the number of clones with at least one meth-

ylated CpG site divided by the total number of clones (n = 8 per group; *p < 0.05).

(D) mRNA levels of Gdnf in the HP, vSTR, dSTR, and prefrontal cortex (PFC) are shown (n = 6).

(E) CpGmethylation profiles in the vSTR of stressed (CUMS) BALBmice with or without continuous IMI treatment, and nonstressed (NS) mice (n = 7–8 per group;

*p < 0.05 versus NS mice receiving vehicle [normal water]).

(F) Samples of the sequence fluorograms obtained using bisulfite sequencing of DNA isolated from the vSTR of CUMS- and NS-BALB mice are shown. Arrows

indicate methylated and nonmethylated sequences of CpG site 2.

(G) Mean percent of the methylation of CpG site 2 at the Gdnf promoter in stressed B6 mice (n = 7–8 per group; *p < 0.05).

(H)MeCP2 occupancy at theGdnf promoter in theHP and vSTRweremeasured usingChIP analysiswith antibodies specific toMeCP2 (n = 6 per group; *p < 0.05).

(I) MeCP2 levels at the Gdnf promoter and Bdnf promoter II were measured by ChIP analysis of vSTR DNA from mice subjected to CUMS (n = 7–8 per group;

*p < 0.05 versus NS mice receiving water in the corresponding strain). Data are presented as mean ± SEM.
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CUMS Increases DNA Methylation at the Gdnf

Promoter in Both Strains
Previous reports have suggested that histone methylation can

affect DNA methylation at specific promoter regions (Lachner

and Jenuwein, 2002). To investigate whether CUMS and/or

IMI-induced alterations in the levels of H3K27me3 and

H3K4me3 at the Gdnf promoter (Figures 2C and 2D) correlate

with an increase in DNA methylation, DNA methylation assays
were performed. Cytosine methylation is a highly stable epige-

netic process that regulates gene expression through its effects

on transcription factor binding (Bird, 2001). Computational

analysis (Takai and Jones, 2003) predicted that the Gdnf

promoter has CpG islands adjacent to the transcription start

site (CG> 60%, observedCpG/expected CpG> 0.81, and length

> 300 bp; Figure 4A). Furthermore, these CpG islands are highly

conserved in mice, rats, and humans (data not shown). First, to
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examine whether CpG sites within the Gdnf promoter are truly

methylated in vivo, the methylation levels of each CpG site

were measured within the Gdnf promoter and a portion of the

first exon. We used sodium bisulfite mapping to examine the

methylation status of individual CpG sites within Gdnf. This

method can detect both 5-methylcytosine and 5-hydroxy-meth-

ylcytosine. Sequence analysis of the bisulfite-converted DNA

isolated from the HP and vSTR of BALB mice revealed less

methylation at CpG sites 2 and 8–12 in the vSTR compared

with congruent CpG sites in the HP (Figure 4B). In addition,

sodium bisulfite mapping revealed a significantly lower

percentage of methylated clones in the vSTR compared with

the HP (Figure 4C). Concomitantly, the mRNA level of Gdnf in

the vSTR was approximately 13-fold higher than that of the HP

(Figure 4D), suggesting an association between the CpGmethyl-

ation level and Gdnf mRNA expression in vivo. Therefore, the

effects of 6 weeks of CUMS and continuous IMI treatment on

CpG methylation were analyzed with bisulfite-converted DNA

isolated from the vSTR of BALB mice. As indicated in Figures

4E and 4F, CUMS significantly increased methylation levels at

CpG sites 2 and 3, but these hypermethylations were reversed

by IMI treatment. Unexpectedly, the level of methylation at

CpG site 2, but not at site 3, was also increased by CUMS in

the vSTR of B6 mice (Figure 4G and data not shown).

CUMS Increases the Binding of MeCP2
at the Gdnf Promoter in Both Strains
The binding of methyl-CpG binding proteins (MBDs; MBD1,

MBD2, MBD3, MBD4, and MeCP2) to the target gene promoter

is a precise mechanism of gene transcription. Among MBDs,

MeCP2 is most abundantly expressed as a chromosomal protein

and requires a single methylated CpG site for preferential binding

toDNA (Nan et al., 1997; Jones et al., 1998). Therefore, the binding

of MeCP2 to the Gdnf promoter was directly assessed using the

ChIP assay. First, to determine whether there is a difference in

binding of MeCP2 to this promoter in the HP and vSTR of naive

adult BALB mice, Q-PCR analysis of recovered DNA was per-

formed using Gdnf promoter-specific primers. Gdnf promoter-

containing DNA fragments were significantly less common in

MeCP2 immunoprecipitates prepared from the vSTR compared

with those from the HP (Figure 4H). Q-PCR analysis of the same

immunoprecipitates was performed with a specific primer for

Gdnf exon 3, which has no CpG island, and the immunoprecipi-

tated DNA fragments were less common or undetectable (data

not shown), validating the specificity of the ChIP protocol used.

Next, the effect of 6weeks ofCUMSand continuous IMI treatment

on the binding ofMeCP2 to theGdnfpromoterwas analyzed in the

vSTR (Figure 4I). ChIP analysis revealed that CUMS significantly

increased MeCP2 binding to the Gdnf promoter in both BALB

and B6 mice, and continuous IMI treatment reversed this effect

in stressed BALB mice. There was no significant difference in

thebindingofMeCP2 to theBdnfpromoter II region,whichwasas-

sessed as a control. These results indicate that CUMS enhances

the binding ofMeCP2 to theGdnfpromoter in bothmouse strains.

We next investigated the functional role of methylated

CpG site 2 on Gdnf expression in Neuro2a cells. Treatment of

these cells with 5-aza-20-deoxycytidine, an inhibitor of DNA

methylation, reduced the methylation level at the Gdnf promoter
366 Neuron 69, 359–372, January 27, 2011 ª2011 Elsevier Inc.
(Figure S8A) and concomitantly increased Gdnf mRNA expres-

sion (Figure S8B). Next, the promoter activity of a CpG site

2-specific methylated Gdnf luciferase reporter gene was investi-

gated. We found that CpG site 2-specific methylation resulted in

an approximately 68% decrease in reporter activity when

MeCP2 and HDAC2 were cotransfected into Neuro2a cells (Fig-

ure S8C). Previous reports have indicated that the high-affinity

binding of MeCP2 to methylated DNA requires a run of four or

more A/T bases adjacent to the methylated CpG site (Klose

et al., 2005). We found two runs of A/T motifs located down-

stream of CpG site 2 (Figure S8D). To test the role of thesemotifs

on Gdnf promoter activity, wild-type and mutant reporters were

constructed for the A/T motifs in CpG site 2 (m1, m2, and m3;

Figure S8D). Then, the promoter activity of the CpG site

2-specific methylated and nonmethylated luciferase reporters

was measured using cotransfection experiments with MeCP2

and HDAC2 in Neuro2a cells (Figure S8E). We found that in

nonmethylated conditions, there was no mutation effect on

reporter activity by cotransfection with MeCP2 and HDAC2,

whereas in the specific methylation of CpG site 2, the reporter

activities of wild-type and m1 and m2 mutants, but not m3

mutant, were affected by HDAC2 and MeCP2 overexpresson.

These results suggest that the A/T motifs adjacent to CpG site

2 are critically involved in the MeCP2-HDAC2-mediated

silencing of Gdnf transcription. Furthermore, we found that

among the MBDs, MeCP2 was the most potent repressor of

the CpG site 2-specific methylated reporter vector (Figure S8F).

Together with the results observed in vivo, these findings

suggest that the methylation of CpG site 2 is important for the

epigenetic repression of Gdnf expression.

CUMS Increases the Binding of MeCP2-HDAC2
to the Gdnf Promoter in BALB Mice
The decreased expression level of Gdnf after CUMS in BALB

micewas investigated to determine if it is triggered by the binding

of MeCP2-HDAC2 complexes to the methylated CpG site of the

Gdnf promoter. This hypothesis was supported, in part, by the

finding that MeCP2 and HDAC2 are colocalized in the NAc (Fig-

ure 5A). The interactions of MeCP2 and HDAC2 were assessed

using IP-Western blot analysis of vSTR proteins. We found that

CUMS increased the formation of MeCP2-HDAC2 complexes

in stressed BALB mice. This effect was reversed by continuous

IMI treatment (Figure 5B). Next, to investigate the effect of

CUMS on the binding of MeCP2-HDAC2 complexes at the

Gdnf promoter, we performed re-ChIP assays using an antibody

for HDAC2 on the vSTR samples that were initially immunopre-

cipitated with an antibody for MeCP2. The re-ChIP assays indi-

cated that the Gdnf promoter-containing DNA fragments of

stressedBALBmice, but not B6mice,were significantly enriched

compared with those of nonstressed mice, and this effect was

reversed by continuous IMI treatment (Figure 5C). These results

suggest that the CUMS-induced binding of MeCP2-HDAC2

complexes to the Gdnf promoter silences its transcription.

To investigate the role of DNA methylation in the CUMS-

induced suppression of Gdnf expression and on depression-

like behaviors, zebularine (ZEB), a DNA methyltransferase

inhibitor, was continuously delivered into the NAc of BALB mice

by an osmotic pump. The experimental design is shown in



Figure 5. Increased MeCP2-HDAC2 Occupancy at

the Gdnf Promoter in Stressed BALB Mice

(A) Immunohistochemistry for HDAC2 andMeCP2 demon-

strated strong nuclear staining in the NAc. Scale bar,

100 mm.

(B) Nuclear extracts prepared from the vSTR of stressed

(CUMS) or nonstressed (NS) BALB mice with or without

IMI treatment were immunoprecipitated to evaluate the

association of HDAC2 with MeCP2.

(C) Q-PCR assays of the reimmunoprecipitates of HDAC2

antibodies of ChIP samples treated with MeCP2 anti-

bodies (re-ChIP assay) showed that Gdnf promoter-con-

taining DNA fragments were enriched in stressed BALB

mice (n = 6–8 per group; *p < 0.05 versus NS mice

receiving vehicle). Data are presented as mean ± SEM.
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Figure S1E. Five days after surgery, mice were subjected to

4 weeks of CUMS, followed by behavioral and expression

analyses. We found that the social interaction times and sucrose

preferences of stressedmice receiving ZEB (100 mM)were signif-

icantly higher compared with those times and preferences of

vehicle-treated mice (Figures 6A and B). In the novelty-sup-

pressed feeding test, the latency to feed was significantly

decreased in stressed mice receiving ZEB compared with

vehicle-treated controls (Figure 6C). In the forced swim test, the

immobility times were significantly shorter in stressed and non-

stressed mice receiving ZEB compared with the times of

vehicle-treated mice (Figure 6D). Furthermore, the mRNA levels

of Gdnf in ZEB-treated mice were greater than the levels in

vehicle-treated mice (Figure 6E) in stressed conditions. These

findings confirm that there is less DNA methylation of CpG site

2 at the Gdnf promoter in stressed mice treated with ZEB

compared with vehicle-treated mice (Figure 6F). We also tested

whether intra-NAc delivery of RG108, a potent, nonnucleoside

inhibitor of DNAmethylation, could reverse the increaseddepres-

sion-like behaviors in BALB mice. Similar to the effects of ZEB,

continuous delivery of RG108 (100 mM) directly into the NAc

increased thesocial interaction time (Figure 6G) andsucrosepref-

erence (Figure 6H) ofmice in the stressedcondition. Furthermore,

we found that CUMS increased the mRNA expressions for DNA

methyltransferase 1 (DNMT1) and DNMT3a, but not DNMT3b,

in the vSTR of stressed mice. This effect was reversed by contin-

uous intra-NAc delivery of ZEB and RG108 (Figure 6I). These

results suggest that DNA methylation is critical for the CUMS-

inducedGdnf repression and subsequent depression-like behav-

iors in BALB mice. Our data also suggest that the continuous

intra-NAc delivery of DNMT inhibitors represses the expression

of Dnmts at the transcription level in postmitotic neurons.

CUMS Increases Binding of MeCP2-CREB
to the Gdnf Promoter in B6 Mice
Although DNA methylation is generally thought to be associated

with transcriptional repression of the target genes, a recent study
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suggested that the binding of a complex of

MeCP2 and cyclic AMP response element

(CRE)-binding protein (CREB) to the methylated

CpG site can activate transcription (Chahrour

et al., 2008). Interestingly, the putative CRE
site is adjacent to CpG site 2 of the Gdnf gene (Figure 7A). In

addition, we found that MeCP2 and CREB are colocalized in

the NAc (Figure 7B). These facts led us to speculate that the

binding of the MeCP2-CREB complex to the Gdnf promote

may be a causal mechanism of the increased Gdnf expression

in stressed B6 mice. To test this possibility, we assessed the

interactions of MeCP2 and CREB in vSTR proteins of B6 and

BALB mice. IP-Western blot analysis showed that there is no

apparent difference in the formation of MeCP2-CREB

complexes between stressed and nonstressed mice in both

strains (Figure 7C). Next, to investigate the binding of MeCP2-

CREB complexes at the Gdnf promoter, we performed re-ChIP

assays using an antibody for CREB on vSTR samples that had

been initially immunoprecipitated with an antibody for MeCP2

Consistent with a previous report (Chahrour et al., 2008)

CREB-MeCP2 complexes on the somatostatin promoter were

enriched, whereas they were reduced on the myocyte enhance

factor 2c promoter (data not shown), validating the specificity o

the re-ChIP used. We found that the Gdnf promoter-containing

DNA fragments of stressed B6 mice were significantly enriched

in the reimmunoprecipitates of samples treated with CREB anti-

bodies compared with those of nonstressed mice. This effec

was not seen in stressed BALB mice (Figure 7D). These results

suggest that the CUMS-induced binding of MeCP2-CREB

complexes to the Gdnf promoter leads to the activation of its

transcription.

DISCUSSION

This study used genetically distinct inbred mouse strains to

describe one of the molecular mechanisms underlying suscepti-

bility and adaptation responses to chronic stress. The proposed

mechanisms underlying stress susceptibility and adaptation

are described in Figure 7E. Our results suggest that CUMS

increases DNA methylation at CpG site 2, and this is associated

with increased MeCP2 binding. MeCP2 associated with CpG

site 2 interacts with HDAC2, which in turn decreases the leve



Figure 6. Effects of a DNA Methyltransferase Inhibitor on CUMS-Induced Depression-Like Behaviors and Gdnf mRNA Expression

Either ZEB (10 mM or 100 mM) or a vehicle control was continuously and bilaterally delivered into the NAc of BALB mice. After each 4-week CUMS session, the

depression-like behaviors of mice were analyzed.

(A–D) Social interaction times (n = 9–12 per group), (B) sucrose preferences (n = 10–12 per group), (C) latencies to feed (n = 10–12 per group), and (D) immobility

times (n = 10–12 per group) are shown (*p < 0.05).

(E) The mRNA levels of Gdnf in the vSTR were measured by Q-PCR (n = 6–8 per group; *p < 0.05).

(F) Mean percent methylation of CpG site 2 at the Gdnf promoter in stressed BALB mice receiving ZEB (100 mM) or vehicle (n = 6 per group; *p < 0.05).

(G and H) RG108 (10 mM or 100 mM) or vehicle was continuously and bilaterally delivered into the NAc of stressed BALB mice. After each 4-week CUMS session,

the (G) social interaction time (n = 9–12 per group) and (H) sucrose preference (n = 11–15 per group) of the subjects were analyzed (*p < 0.05).

(I) ThemRNA levels ofDnmt1,Dnmt3a, andDnmt3b in the vSTR of mice receiving ZEB or RG108 (100 mM) were measured by Q-PCR (n = 6–8 per group; *p < 0.05

versus NS mice receiving vehicle). Data are presented as mean ± SEM.
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of H3 acetylation and concomitantly represses Gdnf transcrip-

tion, leading to the formation of a more depression-susceptible

phenotype in BALB mice. Continuous IMI treatment relieves

MeCP2 occupancy and reverses HDAC2 levels, which leads to

normal levels of H3 acetylation and subsequent Gdnf transcrip-

tion, resulting in normal emotional behaviors. Although increased

DNA methylation at CpG site 2 and increased MeCP2 occu-

pancy were also observed after CUMS exposure in B6 mice,

the acetylation levels of H3 and Gdnf expression were greater.

Importantly, we found evidence for the binding of the MeCP2-

CREB complex to themethylated CpG site on theGdnf promoter

in stressed B6 mice. This may be a causal mechanism for the

induction of Gdnf expression in stressed B6 mice. Thus, our

data provide evidence that differential epigenetic marks in the
368 Neuron 69, 359–372, January 27, 2011 ª2011 Elsevier Inc.
NAc, along with environmental and genetic factors, may influ-

ence either the susceptibility or adaptation responses of an

organism to chronic daily stressful events.

Role of GDNF in Stress Responses
NAc has been implicated in the development of depression-like

behaviors and has an influence on the action of antidepressants

(Charney and Manji, 2004; Krishnan and Nestler, 2008; Feder

et al., 2009). The data presented here indicate that differential

histone modifications at the Gdnf promoter between stressed

BALB and B6mice result in differential levels ofGdnf expression.

Overexpression of GDNF in the NAc increased social interaction

times and sucrose preference in the stressed and/or the non-

stressed conditions. Conditional GDNF knockout mice showed



Figure 7. Increased MeCP2-CREBOccupancy at theGdnf Promoter

in Stressed B6 Mice

(A) Positions of the CpG site 2 and putative CREB-binding site within the Gdnf

promoter.

(B) Immunohistochemistry for MeCP2 and CREB demonstrated strong nuclear

staining in the NAc. Scale bar, 100 mm.

(C) Nuclear extracts prepared from the vSTR of stressed (CUMS) or non-

stressed (NS) B6 mice were immunoprecipitated to evaluate the association

of MeCP2 with CREB.

(D) Q-PCR analyses of reimmunoprecipitates for CREB antibodies of ChIP

samples treated with MeCP2 antibodies (re-ChIP assay) showed that Gdnf

promoter-containing DNA fragments were enriched in stressed B6 mice (n =

4–5 per group; *p < 0.05 versus NSmice). Data are presented as mean ± SEM.

(E) Proposed mechanisms detailing how the chromatin microenvironment at

the Gdnf promoter regulates its expression after CUMS exposure with or

without IMI treatment in BALB and B6mice. This study proposes that dynamic

epigenetic changes in the Gdnf promoter may serve either as a repressive or

activating marker of transcription in the NAc, and these changes may serve

as causal mechanisms of the different behavioral responses to stress in

BALB and B6 mice (refer to the Discussion for more details).
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reduced spontaneous activity in the open field test (Pascual

et al., 2008). In addition, mice that are not susceptible to social

defeat stress show increased Gdnf expression in the ventral

tegmental area (VTA) (Krishnan et al., 2007). The VTA-NAc

network of the mesolimbic dopamine system may be involved

in susceptibility and resistance responses to chronic stress

(Nestler and Carlezon, 2006; Krishnan et al., 2007). GDNF

promotes the survival and maintenance of midbrain dopamine-

containing neurons, and GDNF protects neurons in the dopa-

mine system from various toxic stimuli (Lin et al., 1993; Bespalov

and Saarma, 2007; Pascual et al., 2008). Thus, the data

presented here support the hypothesis that the mesolimbic

dopamine system is involved in the formation of susceptibility

and resistance responses to chronic stress.

In our experiments, continuous IMI treatment rescued the

reduced GDNF expression in the vSTR of stressed BALB mice,

suggesting that GDNF is also involved in the behavioral

responses to antidepressants. The rescue of GDNF expression

in stressed BALB mice returned behavioral performances back

to control levels. However, it is still unclear whether the IMI-medi-

ated upregulation of GDNF expression is critically involved in the

antidepressant responses. IMI treatment also enhanced the

mRNA expressions for other neurotrophic factors, including

BDNF and VEGF, in multiple brain regions of BALB mice, and

thesemolecules are thought to be associatedwith the behavioral

responses to antidepressants (Warner-Schmidt and Duman,

2007; Krishnan and Nestler, 2008). Thus, we cannot exclude

the possibility that molecules other than GDNF are important

for the behavioral effects of antidepressant in the animal models

used this study. Further experiments are needed to clarify the

role of GDNF in the behavioral responses to antidepressants.

CUMS and Antidepressants Affect Histone
Modifications in the Gdnf Promoter
Persistent depressive symptoms suggest the involvement of

stable changes in gene expression in brain, which may reflect

a degree of chromatin remodeling, such as histone acetylation

(Krishnan and Nestler, 2008; Tsankova et al., 2007). Recent

reports have suggested that modulations of histone acetylation

by HDAC2 and HDAC5 are also involved in the actions of antide-

pressants (Tsankova et al., 2006; Covington et al., 2009). In addi-

tion, subchronic administration of SAHA directly into the NAc of

mice reverses the reduced social interaction time caused by

social defeat stress (Covington et al., 2009). Similarly, this study

demonstrated that the increased depression-like behaviors

caused by CUMS were reversed by the subchronic administra-

tion of SAHA and the overexpression of dnHDAC2. However,

nonstressed mice that received subchronic SAHA treatment

did not exhibit any observable effects in their social interaction

times, sucrose preferences, or expression levels of Gdnf

mRNA. Taken together, these findings suggest that the hyperac-

tive HDACs are involved in the reduction ofGdnf expression and

subsequent depression-like behaviors induced by CUMS. In

addition, we found that the overexpression of the HDAC2

C262/274A mutant, but not wild-type HDAC2, in the NAc

of stressed B6 mice decreased social interaction time and

Gdnf expression, suggesting a possible contribution of the

S-nitrosylation of HDAC2 to the stress responses. We also found
Neuron 69, 359–372, January 27, 2011 ª2011 Elsevier Inc. 369
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that CUMS reduced the levels of H3K4me3 at theGdnf promoter

in both BALB and B6 mice, whereas the levels of H3K27me3 at

its promoter were decreased only in B6 mice. These findings

seem to be inconsistent with regard to the levels ofGdnf expres-

sion. The reduced H3K4me3 level at the Gdnf promoter in the

NAc may be a common mechanism for responses to CUMS,

and the reduced H3K27me3 level may be one of the important

mechanisms modulating the chromatin microenvironment that

primes adaptation responses to CUMS.

DNAMethylation at theGdnfGene Promoter Is Required
for Both Susceptible and Adaptive Responses to CUMS
In addition to histone acetylation, the data presented here

suggest an important role for DNA methylation in Gdnf expres-

sion and the subsequent behavioral responses to chronic stress.

The epigenetic molecular mechanisms of DNA methylation in

the brain may play important roles in the regulation of synaptic

plasticity, memory formation, and stress responses (Weaver

et al., 2004; Levenson and Sweatt, 2005; Krishnan and Nestler,

2008; Feder et al., 2009). Our data indicate that CUMS enhances

DNA methylation at particular CpG sites on the Gdnf promoter

in BALB mice. Importantly, our work indicates that the

CUMS-induced depression-like behaviors and reduced Gdnf

expression were reversed by the intra-NAc delivery of DNA

methyltransferase inhibitors, a result that has been replicated

in a recent report (LaPlant et al., 2010). Unexpectedly, the

increased DNA methylation and MeCP2 binding also occurred

in stress-resilient B6 mice. In general, DNA methylation is

primarily associated with the repression of gene transcription.

However, a recent study indicated that MeCP2-CREB

complexes have assumed the role of inducing target gene

expression (Chahrour et al., 2008). In addition, Gdnf expression

may be regulated by CREB (Cen et al., 2006). Together with

these findings, this study suggests that the binding of different

MeCP2 complexes (i.e., MeCP2-CREB and MeCP2-HDAC2) to

the methylated CpG site on the Gdnf promoter may be a causal

mechanism for the induction and repression of Gdnf expression

in the NAc of B6 and BALB mice.

Conclusion
This study provides insights into the role that genetic factors, in

combination with environmental factors, may play in the epige-

netic regulation of Gdnf. Dynamic epigenetic regulations of the

Gdnf promoter in the NAc play important roles in determining

both the susceptibility and the adaptation responses to chronic

stressful events. Elucidation of the mechanisms underlying the

modulations of HDAC2 expression, histone modifications, and

DNA methylation influenced by CUMS could lead to novel

approaches for the treatment of depression.

EXPERIMENTAL PROCEDURES

Details can be found in the Supplemental Experimental Procedures.

Animals

Adult male C57BL/6J and BALB/cmice (Charles River Japan) weremaintained

on a 12 hr/12 hr light/dark cycle with mouse chow and water ad libitum. Four

mice were housed in each cage. Eight- or nine-week-old mice were used at

the start of experiments (i.e., CUMS, stereotaxic surgery). All experimental
370 Neuron 69, 359–372, January 27, 2011 ª2011 Elsevier Inc.
procedures were performed according to the Guidelines for Animal Care

and Use at Yamaguchi University Graduate School of Medicine.
CUMS Procedure

The CUMSprocedure has been previously described in detail (Lanfumey et al.,

1999; Rangon et al., 2007) and was conducted here with minor modifications.

This procedure was based solely on environmental and social stressors, which

did not include food/water deprivation. A total of three stressors were used in

this study. For the first stressor, two of the following five ultra-mild diurnal

stressors were delivered randomly over a period of 1–2 hr with a 2 hr stress-

free time period between the two stressors: a period of cage tilt (30�), confine-
ment to a small cage (113 83 8 cm), paired housing, soiled cage (50 ml water

per 1 l of sawdust bedding), and odor (10% acetic acid), The second stressor

consisted of four ultra-mild nocturnal stressors, including one overnight period

with difficult access to food, one overnight period with permanent light, one

overnight period with a 30� cage tilt, and one overnight period in a soiled

cage. For the third stressor, a reversed light/dark cycle was used from Friday

evening to Monday morning. This procedure was scheduled over a 1-week

period and repeated four or six times, but the reversed light/dark cycle was

omitted during the weekend of the last week (either the fourth or sixth week)

of the session. Nonstressed mice were handled everyday for weighing

purposes.
Behavioral Procedures

Behavioral tests were performed during the light phase (9 a.m. to 2 p.m.) with

minor modifications, as reported previously (Uchida et al., 2008; 2010). All

behavioral tests were conducted by experimenters who were blind to the

treatment condition of the animal. Details can be found in the Supplemental

Experimental Procedures.
Drugs

IMI, FLX, and 5-aza-20-deoxycytidine were purchased from Sigma. ZEB and

RG108 were purchased from Calbiochem. SAHA was synthesized as

described previously (Suzuki et al., 2009). Details can be found in the Supple-

mental Experimental Procedures.
PEI-Mediated Gene Delivery

PEI-mediated gene delivery was performed as previously reported (Uchida

et al., 2010). Plasmid DNA/PEI complexes were prepared according to the

manufacturer’s instructions (in vivo-jet PEI; PolyPlus Transfection). Seven

days after bilateral canulae implantation into the NAc (+ 1.5 mm AP,

± 1.0 mmML,�4.0 mmDV), mice were subjected to a 4-week CUMS session.

PEI/plasmid complexes (0.5 ml/hemisphere) were injected on day 14 of the

CUMS session. Details can be found in the Supplemental Experimental

Procedures.
AAV-Mediated Gene Transfer

AAV-mediated gene transfer was performed as previously reported (Uchida

et al., 2010). The genomic titer of each virus was determined using Q-PCR.

The titers of AAV-EGFP, AAV-HA-HDAC2, AAV-HA-dnHDAC2, and AAV-

HA-HDAC2 C262/274A were measured as 5.6 3 1012 viral genomes (vg)/ml,

3.1 3 1012 vg/ml, 3.5 3 1012 vg/ml, and 2.1 3 1012 vg/ml, respectively. For

virus injections, the AAV vector (0.5 ml) was injected bilaterally into the NAc

(+ 1.5 mm AP, ± 1.0 mm ML, �4.5 mm DV) at a rate of 0.l ml/min. Mice were

allowed to recover for 1 week after surgery. Details can be found in the Supple-

mental Experimental Procedures.
Statistical Analysis

Analyses of the datawere performed using an appropriate analysis of variance.

Significant effects were followed up with Bonferroni’s post hoc tests. Unpaired

t tests were used for two-group comparisons. Pearson correlations were

calculated to assess correlations between data. In all cases, p values were

two-tailed, and the comparisons were considered statistically significant

when p < 0.05. Data are presented as the mean ± SEM.
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SUPPLEMENTAL INFORMATION

Supplemental Information includes eight figures, four tables, and Supple-

mental Experimental Procedures and can be found with this article online at

doi:10.1016/j.neuron.2010.12.023.
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